

Au-Ag 合金纳米球壳光吸收和后向散射特性的优化

武盼盼^{1,2},帕尔哈提江·吐尔孙^{1,2*},热米莱·阿卜来提^{1,2},郑玉霞^{1,2}

「新疆师范大学物理与电子工程学院,新疆 乌鲁木齐 830054;

²新疆师范大学新型光源与微纳光学重点实验室,新疆乌鲁木齐 830054

摘要 为了找到光吸收和后向散射特性更好的纳米球壳,利用双层同心球的 Mie 散射理论和介电函数的尺寸修正 模型定量分析了 Au-Ag 合金纳米球壳的内核半径、外壳厚度、合金成分和周围介质对光吸收和后向散射特性的影 响。结果表明,当 Au 的摩尔分数为 50%,步距为 0.01 nm,内核分别为 SiO₂ 和真空情况时,Au-Ag 合金纳米球壳 的体积吸收系数最大值分别为 93.660 μ m⁻¹ 和 99.316 μ m⁻¹ 时,内核半径分别为 27.89 nm 和 28.02 nm,外壳厚 度分别为 3.95 nm 和 3.35 nm;后向散射系数的最大值分别为 5.280 μ m⁻¹ 和 5.550 μ m⁻¹ 时,内核半径分别为 56.08 nm 和 56.37 nm,外壳厚度分别为 10.47 nm 和 8.89 nm。此外,当 Au 的摩尔分数小于 9%时,Au-Ag 合金 纳米球壳的光吸收特性优于 Au 纳米球壳;当 Au 的摩尔分数小于 11%时,Au-Ag 合金纳米球壳的后向散射特性优 于 Au 纳米球壳。

关键词 光谱学;光吸收与后向散射;Au-Ag 合金纳米球壳;Mie 散射理论;局域表面等离激元共振
 中图分类号 O436.2 文献标志码 A doi: 10.3788/AOS202141.1129001

Optimization of Light Absorption and Backscattering Characteristics of Au-Ag Alloy Nanoshells

Wu Panpan^{1,2}, Tuersun Paerhatijiang^{1,2*}, Abulaiti Remilai^{1,2}, Zheng Yuxia^{1,2}

¹ School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China; ² Laboratory of Novel Light Source and Micro/Nano-Optics, Xinjiang Normal University,

Urumqi, Xinjiang 830054, China

Abstract To find alloy nanoshells with better light absorption and backscattering properties, we quantitatively analyze the effects of the core radius, shell thickness, alloy composition, and ambient medium of Au-Ag alloy nanoshells on the light absorption and backscattering properties. In the process, the Mie scattering theory of double-layer concentric spheres and the size correction model of dielectric functions are adopted. The results show that when the Au molar fraction of 50%, the size step of 0.01 nm, the inner core is SiO₂ and vacuum, the maximum volume absorption coefficients of Au-Ag alloy nanoshells are respectively 93.660 μ m⁻¹ and 99.316 μ m⁻¹, with the inner core radius of 27.89 nm and 28.02 nm and the shell thicknesses of 3.95 nm and 3.35 nm. When the maximum volume backscattering coefficients are respectively 5.280 μ m⁻¹ and 5.550 μ m⁻¹, with the inner core radius of 56.08 nm and 56.37 nm and the shell thicknesses of 10.47 nm and 8.89 nm. When the Au molar fraction is less than 9%, the light absorption characteristics of Au-Ag alloy nanoshells are better than those of Au nanoshells. When the Au molar fraction is lower than 11%, the Au-Ag alloy nanoshells are superior to Au nanoshells in backscattering characteristics.

Key words spectroscopy; light absorption and backscattering; Au-Ag alloy nanoshells; Mie scattering theory; localized surface plasmon resonance

OCIS codes 300.1030; 290.1350; 290.4020; 160.4236

收稿日期: 2020-12-07;修回日期: 2020-12-27;录用日期: 2021-01-08

基金项目:国家自然科学基金(11764042)、新疆维吾尔自治区自然科学基金(2021D01A116)

* E-mail: ptuersun@163.com

1 引 言

金属纳米材料具有优异的光学特性,是一种非 常重要的多功能材料。纳米颗粒与特定波长的入射 光相互作用时,会产生局域表面等离激元共振 (LSPR)现象,导致金属纳米颗粒在共振波长处发生 强烈的吸收和散射^[1],从而大幅度增强金属纳米颗 粒表面附近的局部电场。近年来,人们通过改变纳 米颗粒的材料、尺寸、形状或周围环境和入射光的偏 振态调控 LSPR 效应^[24],使金属纳米颗粒在多个领 域中得到了广泛的应用,如生物成像^[5]、光热治 疗^[6]、生物传感^[7]、生物检测^[8]、催化^[9]、表面增强拉 曼散射^[10]领域。

随着纳米材料制备技术的飞速发展,双金属纳 米颗粒的出现引起了人们的关注。相比单一金属纳 米颗粒,双金属纳米颗粒的物理和化学性质更优,如 独特的光学、电学和催化性能^[11-13]。Au 纳米颗粒 具有的化学稳定性、抗腐蚀性、无毒性、生物相容性 使其在医学检测、光热治疗、成像分析等方面有着广 泛的应用^[14-15]。Ag 纳米颗粒具有消光截面大、灵 敏度高以及表面增强拉曼散射效应强等优点,广泛 应用于传感、探测等领域[16-17]。但在非理想化学环 境(如氧化环境)下,Ag纳米颗粒的结构稳定性差 且容易被氧化。为了使纳米颗粒同时兼备 Au 纳米 颗粒的稳定性和 Ag 纳米颗粒优异的光学特 性[18-21],人们用化学还原法、置换法、电化学沉积、自 组装等合成方法制备出不同大小和形状的 Au-Ag 合金纳米颗粒,这些颗粒的光学特性可调性强,化学 稳定性好,目性能优越,在光热治疗、生物成像、光催 化、药物分析等领域具有潜在应用价值^[22-26]。

Au-Ag 合金纳米球壳在光热治疗中的应用依赖于其光吸收特性,原因是具有强吸收特性的纳米颗粒有助于增强光热效应、缩短光照时间、减少生物组织的光热损伤。Au-Ag 合金纳米球壳在生物成像中的应用取决于其后向散射特性,原因是具有强后向散射特性的纳米颗粒有助于增强生物组织的回波信号,提高成像质量。因此,通过理论模拟寻找具有最佳吸收或后向散射特性的 Au-Ag 合金纳米球壳结构可为合金颗粒的制备提供有效的理论指导,

第 41 卷 第 11 期/2021 年 6 月/光学学报

避免盲目尝试带来的材料损耗。本文采用双层同心 球的 Mie 散射理论^[27]和介电函数的尺寸修正模型 对 Au-Ag 合金纳米球壳的光吸收与后向散射特性 进行了数值模拟。在特定波长下,给出内核为 SiO₂ 和真空情况下 Au-Ag 合金纳米球壳的最大体积吸 收系数、后向散射系数以及对应的内核半径和外壳 厚度。同时,定量分析了 Au 的摩尔分数和生物组 织折射率对优化结果的影响,为 Au-Ag 合金纳米球 壳在光热治疗和生物成像中的应用提供了理论 指导。

2 理论方法

实验研究的 Au-Ag 合金纳米球壳几何模型如 图 1 所示,其中,R₁ 为内核半径,R₂ 为外壳半径,t 为外壳厚度,n₁、n₂ 和 n_m 分别为内核介质、外壳介 质和周围环境的折射率。对于单个 Au-Ag 合金纳 米球壳,通常用吸收截面(C_{abs})和后向散射截面 (C_{back})表示光吸收与后向散射特性。吸收截面定义 为颗粒吸收的光功率与入射光强之比,后向散射截 面定义为入射光传播反方向单位立体角内散射的光 功率与入射光强之比,可表示为^[27]

$$C_{\rm abs} = \frac{2\pi}{k^2} \sum_{n=1}^{\infty} (2n+1) \left[\operatorname{Re}(a_n + b_n) - |a_n|^2 - |b_n|^2 \right],$$
(1)

$$C_{\text{back}} = \frac{1}{4k^2} \left| \sum_{n=1}^{\infty} (2n+1)(-1)^n (a_n - b_n) \right|^2,$$
(2)

图 1 Au-Ag 合金纳米球壳的几何模型

Fig. 1 Geometric model of the Au-Ag alloy nanoshell 式中, $k=2\pi n_m/\lambda$ 为入射光在周围介质的波数, λ 为 入射光在真空中的波长, a_n 和 b_n 为散射系数,n为

散射系数的阶数,a,和b,可表示为^[28]

$$\psi_{n}(x_{2}) \left[\psi_{n}'(m_{2}x_{2}) - A_{n} \chi_{n}'(m_{2}x_{2}) \right] - m_{2} \psi_{n}'(x_{2}) \left[\psi_{n}(m_{2}x_{2}) - A_{n} \chi_{n}(m_{2}x_{2}) \right]$$

$$u_{n} = \xi_{n}(x_{2}) \left[\psi_{n}'(m_{2}x_{2}) - A_{n}\chi_{n}'(m_{2}x_{2}) \right] - m_{2}\xi_{n}'(x_{2}) \left[\psi_{n}(m_{2}x_{2}) - A_{n}\chi_{n}(m_{2}x_{2}) \right], \qquad (3)$$

$$b_{n} = \frac{m_{2}\psi_{n}(x_{2})[\psi_{n}'(m_{2}x_{2}) - B_{n}\chi_{n}'(m_{2}x_{2})] - \psi_{n}'(x_{2})[\psi_{n}(m_{2}x_{2}) - B_{n}\chi_{n}(m_{2}x_{2})]}{m_{2}\xi(x_{2})[\psi_{n}'(m_{2}x_{2}) - B_{n}\chi_{n}'(m_{2}x_{2})] - E_{n}\chi_{n}'(m_{2}x_{2})]},$$
(4)

$$B_{n} = \frac{1}{m_{2}\chi_{n}'(m_{2}x_{1})\psi_{n}(m_{1}x_{1}) - m_{1}\chi_{n}(m_{2}x_{1})\psi_{n}'(m_{1}x_{1})},$$
(6)

式中, m_1 和 m_2 分别为内核和外壳的相对折射率, x_1 和 x_2 分别为内核和外壳的尺寸参数, ϕ_n 、 χ_n 和 ξ_n 分别为第一类、第二类、第三类里卡蒂-贝塞尔 (Riccati-Bessel)函数,可表示为

$$m_1 = \frac{n_1}{n_m}, \ m_2 = \frac{n_2}{n_m},$$
 (7)

$$x_1 = 2\pi R_1 n_m / \lambda, \ x_2 = 2\pi R_2 n_m / \lambda, \qquad (8)$$

$$\psi_n(\rho) = \rho i_n(\rho), \ \chi_n(\rho) = -\rho v_n(\rho),$$

$$\xi_{n}(\rho) = \rho h_{n}^{(1)}(\rho), \quad (9)$$

$$\xi_{n}(\rho) = \rho h_{n}^{(1)}(\rho), \quad (9)$$

式中, j_n 、 y_n 和 h_n ⁽¹⁾分别为第一类、第二类和第三类 球贝塞尔函数,散射系数可基于文献[28]计算。

对于实际应用中的纳米颗粒,用吸收截面和后向散射截面衡量其光吸收和后向散射能力是不合理的。原因是相同材料的纳米颗粒尺寸、体积、质量不同。因此,用单位颗粒体积的吸收与后向散射截面即体积吸收系数(α_{abs})和体积后向散射系数(α_{back}) 描述纳米颗粒的吸收与后向散射特性,可表示为^[27]

$$\alpha_{\rm abs} = C_{\rm abs} / V_{\rm p} , \qquad (10)$$

$$\alpha_{\rm back} = C_{\rm back} / V_{\rm p}, \qquad (11)$$

式中, V_{p} 为单个颗粒的体积。由 $n_{2} = \epsilon^{1/2}$ 可知,只 需知道外壳的介电函数 ϵ ,就能得到外壳的折射率。 Rioux 等^[29]建立了 Au-Ag 合金在紫外光-可见光-近红光外范围内的介电函数理论模型,该模型包括 Drude项和两个临界点,且与光频率和合金成分相 关,合金的介电函数可表示为

$$\varepsilon(\omega, x) = \varepsilon_{\infty}(x) - \frac{\left[\omega_{p}(x)\right]^{2}}{\omega^{2} + i\omega\Gamma_{p}(x)} + \varepsilon_{CP1}\left[\omega, \omega_{01}(x), \omega_{g1}(x), \Gamma_{1}(x), A_{1}(x)\right] + \varepsilon_{CP2}\left[\omega, \omega_{02}(x), \Gamma_{2}(x), A_{2}(x)\right], \quad (12)$$

式中, ω 为入射光的频率,x 为 Au 的摩尔分数,Ag 的摩尔分数为 1-x, ε_{∞} 为自由电子从高能级跃迁 的贡献, ω_p 为等离子体频率, Γ_p 为自由电子的阻尼 系数(碰撞频率)。 A_j 为振幅, $j=1,2,\omega_{0j}$ 为跃迁 阈值, ω_{gj} 为跃迁空隙, Γ_j 为展宽因子阻尼系 数^[29-30]。该模型中与频率有关的介电函数 ε_{CP1} 与 ε_{CP2} 可表示为^[29]

$$\varepsilon_{\rm CP1}(\omega) = A_1 \left\{ -\frac{\sqrt{\omega_{\rm g1} - \omega_{\rm 01}}}{2(\omega + i\Gamma_1)^2} \ln\left[1 - \left(\frac{\omega + i\Gamma_1}{\omega_{\rm 01}}\right)^2\right] + \frac{2\sqrt{\omega_{\rm g1}}}{(\omega + i\Gamma_1)^2} \operatorname{arctanh}\left(\sqrt{\frac{\omega_{\rm g1} - \omega_{\rm 01}}{\omega_{\rm g1}}}\right) - \frac{\sqrt{\omega + i\Gamma_1 - \omega_{\rm g1}}}{(\omega + i\Gamma_1)^2} \operatorname{arctanh}\left(\sqrt{\frac{\omega_{\rm g1} - \omega_{\rm 01}}{\omega + i\Gamma_1 - \omega_{\rm g1}}}\right) - \frac{\sqrt{\omega + i\Gamma_1 + \omega_{\rm g1}}}{(\omega + i\Gamma_1)^2} \operatorname{arctanh}\left(\sqrt{\frac{\omega_{\rm g1} - \omega_{\rm 01}}{\omega + i\Gamma_1 + \omega_{\rm g1}}}\right)\right\}, \quad (13)$$

$$\varepsilon_{\rm CP2}(\omega) = -\frac{A_2}{2(\omega + i\Gamma_2)^2} \ln\left[1 - \left(\frac{\omega + i\Gamma_2}{\omega_{\rm 02}}\right)^2\right].$$

$$\omega_{\mathrm{p}}(x) = x^{2} \left(2\omega_{\mathrm{pAu}} - 4\omega_{\mathrm{pAuAg5050}} + 2\omega_{\mathrm{pAg}} \right) +$$

 $x \left(-\omega_{\rm pAu} + 4\omega_{\rm pAuAg5050} - 3\omega_{\rm pAg}\right) + \omega_{\rm pAg}, \quad (15)$

式中, *w*_{pAu}, *w*_{pAg}, *w*_{pAuAg5050}分别为Au, Ag 和等摩尔

分数合金纳米颗粒的等离子体频率。上述介电函数 模型中,Rioux 等^[29]利用遗传算法对多组实验测量 数据进行了拟合,得到模型中的所有未知参数,拟合 参数如表1所示。

+ $2\omega_{pAg}$) + 当金属纳米颗粒的尺寸小于自由电子的平均自 $g_{}$ + ω_{pAg} , (15) 由程时,自由电子的碰撞频率(Γ_{p})以及合金的介电 $u_{x}Ag$ 和等摩尔 函数均受颗粒尺寸的影响。因此,需对合金纳米颗 表 1 Au-Ag 合金介电函数的拟合参数^[29]

Table 1 Thing parameters of the dielectric function of Au Ag anoy	Table 1	Fitting parameters	of the	dielectric	function	of Au-Ag	alloy ^[29]
---	---------	--------------------	--------	------------	----------	----------	-----------------------

Metal	$\omega_{\rm p}/{ m eV}$	$\Gamma_{ m p}/{ m eV}$	ε	$\omega_{\rm g1}/{ m eV}$	$\omega_{\scriptscriptstyle 01}/{ m eV}$	$\Gamma_1/{ m eV}$	A_1	$\omega_{\scriptscriptstyle 02}/{ m eV}$	Γ_2/eV	A_2
Au	8.9234	0.042389	2.2715	2.6652	2.3957	0.1788	73.251	3.5362	0.35467	40.007
AuAg5050	9.0218	0.16713	2.2838	3.0209	2.7976	0.18833	22.996	3.3400	0.68309	57.540
Ag	8.5546	0.022427	1.7381	4.0575	3.9260	0.017723	51.217	4.1655	0.18819	30.770

粒的介电函数进行修正,可表示为[31]

$$\Gamma_{\rm p} = \Gamma_{\rm pBulk} + \alpha \, \frac{h\nu_{\rm F}}{L_{\rm eff}}, \qquad (16)$$

式中, Γ_{pBulk} 为体相材料的阻尼系数,可由拟合参数 计算得到, α 为无量纲参数,通常认为接近于1(实验 为1),h为普朗克常数, $\nu_{\rm F}$ 为自由电子的费米速度, 对于 Au-Ag 合金, $\nu_{\rm F} = 1.4 \times 10^6$ m/s^[29], $L_{\rm eff} = R_2 - R_1$ 为有效的自由电子平均自由程。用 Matlab 仿真计算 Au-Ag 合金纳米球壳体积吸收系数 $\alpha_{\rm abs}$ 和体积后向散射系数 $\alpha_{\rm back}$ 时,需要输入的参数有真 空中入射光的波长 λ 、内核半径 R_1 、外壳厚度 t、Au 的摩尔分数 x,内核介质的折射率 n_1 ,周围介质的 折射率 $n_{\rm m}$ 。内核介质为 SiO₂ (折射率来自文献 [32])或真空(折射率为 1),周围介质为生物组织, 折射率为 1.35~1.70。

3 实验结果与讨论

当光照射到金属纳米颗粒时,光的时变电场会 导致金属纳米颗粒的电子云集体发生振动。当电子 云相对原子核的位置发生位移时,电子与原子核之

第 41 卷 第 11 期/2021 年 6 月/光学学报

间的库仑力产生的恢复力会导致电子云相对于原子 核发生振动。当入射光的频率与电子云的固有振动 频率相匹配时,电子云会发生共振现象,从而出现共 振峰。当金属纳米颗粒的外壳厚度不变,内核半径 增大时,电子云的平均距离增大、运动周期增大、振 动频率减小,导致共振频率减小、共振波长增大,并 出现红移现象;当金属纳米颗粒的内核半径不变、外 壳厚度增大时,电子云的平均距离减小、运动周期减 小、振动频率增大,导致共振频率增大、共振波长减 小,并出现蓝移现象。图 2 为内核半径 R₁、外壳厚 度t、Au的摩尔分数x对 Au-Ag 合金纳米球壳吸 收共振峰的影响。当t为 5 nm,x为 50%, R_1 从 10 nm 增加到 50 nm 时, Au-Ag 合金纳米球壳的共振 吸收光谱发生红移且变宽,强度逐渐减弱,如图 2(a) 所示;当 R1 为 30 nm, x 为 50%, t 从 3 nm 增加到 20 nm 时, Au-Ag 合金纳米球壳的共振吸收光谱发生 蓝移且变窄,强度先增加再逐渐减弱,如图2(b)所 示;当 R_1 为 30 nm,t为 5 nm,x 从 10%增加到 90% 时,Au-Ag合金纳米球壳的共振吸收峰位置变化很 小,但峰值强度先减弱后增强,如图 2(c)所示。

图 2 α_{abs} 的变化曲线。(a)随 R_1 的变化曲线;(b)随 t 的变化曲线;(c)随 x 的变化曲线 Fig. 2 Change curve of α_{abs} . (a) Change curve with R_1 ; (b) change curve with t; (c) change curve with x

为了得到更全面的优化结果,选取光热治疗时 常用的4种典型激发波长,即800,808,820, 1064 nm 进行分析。图3为在800 nm 波长激发下, x为50%时Au-Ag 合金纳米球壳的体积吸收系数 α_{abs} 随内核半径及外壳厚度的变化情况。其中,尺 寸步距为0.1 nm,内核介质为SiO₂(Au-Ag@ SiO₂)的合金纳米球壳体积吸收系数的最大值为 93.65 μ m⁻¹,对应的内核半径及外壳厚度分别为 27.6 nm 和3.9 nm,如图3(a)所示;内核介质为真 空(Au-Ag@Vacuum)的合金纳米球壳体积吸收系 数的最大值为99.30 μ m⁻¹,对应的内核半径及外壳 厚度分别为27.7 nm 和3.3 nm,如图3(b)所示。 图3中的十对应优化结果,括号里的数字分别对 应最优的内核半径、外壳厚度和最大的体积吸收 系数, n_m 为1.44,x为50%。将尺寸步距设置为 0.01 nm,进一步得到两种内核介质的 Au-Ag 合 金纳米球壳在4种典型激发光下优化的体积吸收 系数 $\alpha_{abs,max}$ 、内核半径 $R_{1.opt}$ 和外壳厚度 t_{opt} ,如 表2所示。可以发现,在800 nm 波长激发下,优 化的体积吸收系数最大。随着激发波长的增大, 优化的体积吸收系数最大。随着激发波长的增大, 优化的体积吸收系数逐渐减小、内核半径逐渐增 大、外壳厚度逐渐减小。相比 Au-Ag@SiO₂ 合金 纳米球壳,Au-Ag@Vacuum 合金纳米球壳的体积 吸收系数略大。

将优化后的体积吸收系数、内核半径和外壳厚 度分别用α_{abs,max}、R_{1,opt}和t_{opt}表示, x 从 0 % ~

图 3 α_{abs} 随尺寸的变化(800 nm)。(a)内核为 SiO₂;(b)内核为真空

Fig. 3 α_{abs} changes with the size (800 nm). (a) Inner core is SiO₂; (b) inner core is vacuum

表 2 4 种典型激发波长下 Au-Ag 合金纳米球壳的优化参数 Table 2 Optimum parameters of Au-Ag alloy nanoshells at 4 typical excitation wavelengths

Core	λ /nm	$\alpha_{\rm abs,max}/\mu { m m}^-$	$^{1}R_{1,\mathrm{opt}}/\mathrm{nm}$	$t_{\rm opt}/{\rm nm}$
	800	93.660	27.89	3.95
S:0	808	91.880	28.36	3.92
510_{2}	820	89.293	29.03	3.87
	1064	53.169	43.72	3.29
	800	99.316	28.02	3.35
Vanue	808	97.426	28.45	3.32
vacuum	820	94.679	29.12	3.28
	1064	56.505	43.15	2.78

100%(步距为1%)的 Au-Ag 合金纳米球壳体积吸 收系数、内核半径和外壳厚度优化结果如图 4 所示。可以发现,随着 x 的增加, $\alpha_{abs,max}$ 先减小后增大,当 x 为 11%时,Au-Ag 合金纳米球壳的光吸收能力与

Au相当;且相比 Au-Ag@SiO₂ 合金纳米球壳,Au-Ag@Vacuum 合金纳米球壳的 α_{abs,max} 较大,如图 4 (a)所示。两种纳米颗粒的优化内核半径均先增大 后减小,且相比 Au-Ag@SiO₂ 合金纳米球壳,Au-Ag@Vacuum 合金纳米球壳的优化内核半径略大, 如图 4(b)所示。优化的外壳厚度呈线性增加,相 比 Au-Ag@SiO₂ 合金纳米球壳,Au-Ag@Vacuum 合金纳米球壳的优化外壳厚度较小,如图 4(c)所 示。当 Au 的摩尔分数小于 11%时,Au-Ag 合金 纳米球壳的光吸收能力优于 Au 纳米球壳,内核半 径与球壳厚度更小;当 Au 的摩尔分数大于 11% 时,Au-Ag 合金纳米球壳的介电性能损失比 Au 纳 米球壳更大,光吸收能力比 Au 纳米球壳差。相比 优化的 Au-Ag@SiO₂ 合金纳米球壳,Au-Ag@ Vacuum 合金纳米球壳的光吸收特性较好。

图 4 x 对 Au-Ag 合金纳米球壳优化参数的影响。(a) α_{abs,max};(b) R_{1,opt};(c) t_{opt}

Fig. 4 Effect of x on optimized parameters of Au-Ag alloy nanoshells. (a) $\alpha_{abs,max}$; (b) $R_{1,opt}$; (c) t_{opt}

选取折射率为 1.35~1.70 的生物组织,研究其 对 Au-Ag 合金纳米球壳光吸收特性优化结果的影 响,结果如图 5 所示。可以发现,随着折射率的增 加,体积吸收系数呈线性增加,且相同环境下 Au-Ag@Vacuum 合金纳米球壳的 $\alpha_{abs,max}$ 比 Au-Ag@ SiO₂ 合金纳米球壳大,如图 5(a)所示;优化的内核 半径近似呈线性减小,且相同环境下 Au-Ag@ Vacuum 合金纳米球壳的优化内核半径比 Au-Ag@ SiO₂ 合金纳米球壳略大,如图 5(b)所示;优化的外 壳厚度近似线性增加,且相同环境下 Au-Ag@ Vacuum 合金纳米球壳的优化外壳厚度比 Au-Ag @SiO₂ 合金纳米球壳小,如图 5(c)所示。这表明 在相同环境下,Au-Ag@Vacuum 合金纳米球壳的 光吸收特性较好,优化内核半径相差不大,但优化 外壳厚度更小,在光热治疗方面的光吸收特性也 更好。

图 5 $n_{\rm m}$ 对 Au-Ag 合金纳米球壳优化参数的影响。(a) $\alpha_{\rm abs,max}$;(b) $R_{1,{\rm opt}}$;(c) $t_{\rm opt}$ Fig. 5 Effect of $n_{\rm m}$ on optimized parameters of Au-Ag alloy nanoshells. (a) $\alpha_{\rm abs,max}$; (b) $R_{1,{\rm opt}}$; (c) $t_{\rm opt}$

图 6 为 Au-Ag 合金纳米球壳的后向散射共振 峰位置和强度随内核半径、外壳厚度、Au 摩尔分数 的变化趋势,激发光波长为 800 nm。可以发现,当 t为 10 nm, x 为 50%, R_1 从 30 nm 增加到 70 nm 时, Au-Ag 合金纳米球壳的后向散射光谱发生红移 且变宽,强度逐渐减弱,如图 6(a)所示;当 R_1 为 50 nm, x 为 50%, t 从 5 nm 增加到 25 nm 时, Au-Ag 合金纳米球壳的后向散射共振峰位置发生蓝 移,峰值强度先增强后逐渐减弱, 如图 6(b)所示; 当 R_1 为 50 nm, t 为 10 nm, x 从 10%增加到 90%时, Au-Ag 合金纳米球壳的后向散射共振峰位置变化范 围不明显,峰值强度先减弱后增强, 如图 6(c)所示。

图 6 α_{back} 的变化曲线。(a)随 R_1 的变化曲线;(b)随 t 的变化曲线;(c)随 x 的变化曲线($n_m = 1.44$) Fig. 6 Change curve of α_{back} . (a) Change curve with R_1 ; (b) change curve with t; (c) change curve with x ($n_m = 1.44$)

通过优化给出最大体积后向散射系数和相应的 尺寸,得到 Au-Ag 合金纳米球壳在 830 nm 激发波 长下体积后向散射系数随内核半径及外壳厚度的变 化情况,如图 7 所示。其中,步距为 0.1 nm。可以 发现,Au-Ag@SiO₂ 合金纳米球壳的体积后向散射 系数最大值为 5.28 μm⁻¹,内核半径及外壳厚度分

別为 56.1 nm 和 10.5 nm,如图 7(a)所示; Au-Ag @Vacuum 合金纳米球壳的体积后向散射系数最大 值为 5.55 μ m⁻¹,内核半径及外壳厚度分别为 56.4 nm 和 8.9 nm,如图 7(b)所示。将尺寸步距 设置为 0.01 nm,得到 Au-Ag 合金纳米球壳在 4 种 典型激发波下的最大体积后向散射系数、优化内核

图 7 Au-Ag 合金纳米球壳的 α_{back} 随尺寸的变化($\lambda = 830 \text{ nm}$)。(a)内核为 SiO₂;(b)内核为真空

Fig. 7 α_{back} of Au-Ag alloy nanoshells change with the size ($\lambda = 830 \text{ nm}$). (a) Inner core is SiO₂; (b) inner core is vacuum

研究论文

半径和外壳厚度,结果如表3所示。可以发现,在激 发波长为830 nm时,α_{back,max}最大,后向散射光学特 性最好。随着激发波长的增加,两种纳米球壳优化 后的体积后向散射系数均会减小,且Au-Ag@ Vacuum 合金纳米球壳的外壳厚度比Au-Ag@SiO₂ 合金纳米球壳小。

表 3 4 种典型激发波长下 Au-Ag 合金纳米球壳的

 $\alpha_{\rm back, max}$, $R_{1, \rm opt}$ 和 $t_{\rm opt}$

Table 3 $\alpha_{\text{back,max}}$, $R_{1,\text{opt}}$ and t_{opt} of Au-Ag allow nanoshells at 4 typical excitation wavelengths

Core	λ/nm	$\alpha_{\rm back, max}/\mu {\rm m}^{-1}$	$R_{1,opt}/nm$	$t_{\rm opt}/\rm nm$
	830	5.280	56.08	10.47
SiO	840	5.169	57.18	10.38
5102	900	4.562	63.73	9.91
	1310	2.281	109.22	8.95
	830	5.550	56.37	8.89
Vacuum	840	5.430	57.44	8.81
vacuum	900	4.785	63.89	8.42
	1310	2.357	108.82	7.63

图 8 为 Au 的摩尔分数 x 对 $\alpha_{\text{back,max}}$ 、 $R_{1,\text{opt}}$ 和 t_{opt} 的影响。可以发现,随着 x 的增加, $\alpha_{\text{back,max}}$ 先

第 41 卷 第 11 期/2021 年 6 月/光学学报

减小后增大,在 x 为 9%时,Au-Ag 合金纳米球壳 的 $\alpha_{\text{back,max}}$ 与 Au 纳米球壳相当; 当 x 小于 9% 时, Au-Ag 合 金 纳 米 球 壳 的 α_{back,max} 大 于 Au 纳 米 球 壳;当 x 大于 9% 时, Au-Ag 合 金 纳 米 球 壳 的 α_{back,max}小于Au纳米球壳,介电性能损失大于Au 纳米球壳。相比 Au-Ag@SiO2 合金纳米球壳, Au-Ag@Vacuum 合金纳米球壳的 α hack.max 略大,如图 8 (a) 所示; 优化的内核半径先增大后减小, 相比 Au-Ag@SiO2 合金纳米球壳,Au-Ag@Vacuum 合金纳 米球壳的优化内核半径略大,如图 8(b)所示;优化 的外壳厚度先增大后减小,相比 Au-Ag@Vacuum 合金纳米球壳, Au-Ag@SiO2合金纳米球壳的优 化外壳厚度较大,如图 8(c) 所示。当两种合金纳 米颗粒的 x 小于 9%时,合金纳米球壳优化后的后 向散射特性更好;当 x 大于 9%时,合金纳米球壳 优化后的后向散射特性比 Au 纳米球壳差。相比 优化的 Au-Ag@ SiO₂ 合金纳米球壳, Au-Ag@ Vacuum 合金纳米球壳优化后的后向散射特性 更好。

图 8 x 对 Au-Ag 合金纳米球壳优化参数的影响。(a) $\alpha_{\text{back,max}}$; (b) $R_{1.\text{opt}}$; (c) t_{opt} ($\lambda = 830 \text{ nm}$, $n_{\text{m}} = 1.44$)

Fig. 8 Effect of x on optimized parameters of Au-Ag alloy nanoshells. (a) $\alpha_{\text{back, max}}$;

(b) $R_{1,\text{opt}}$; (c) $t_{\text{opt}}(\lambda = 830 \text{ nm}, n_{\text{m}} = 1.44)$

图 9 为生物组织的折射率对 $\alpha_{back,max}$ 、 $R_{1,opt}$ 和 t_{out} 的影响。可以发现,随着生物组织折射率的增

加,两种合金颗粒的 α_{back,max} 均呈线性增加趋势,且 在相同折射率生物组织液中,Au-Ag@Vacuum 合

图 9 n_m 对 Au-Ag 合金纳米球壳优化参数的影响。(a) α_{back.max};(b) R_{1,opt};(c) t_{opt}(λ=830 nm,x=50%) Fig. 9 Effect of n_m on optimized parameters of Au-Ag alloy nanoshells. (a) α_{back.max};

(b) $R_{1,opt}$; (c) $t_{opt}(\lambda = 830 \text{ nm}, x = 50\%)$

第 41 卷 第 11 期/2021 年 6 月/光学学报

研究论文

金纳米球壳的 α_{back.max} 比 Au-Ag@SiO₂ 合金纳米球 壳大,如图 9(a)所示;两种合金纳米颗粒的优化内 核半径近线性减小,且差别很小,如图 9(b)所示;两 种合金纳米颗粒的优化外壳厚度呈线性增加,且 Au-Ag@Vacuum 合金纳米球壳的优化外壳厚度比 Au-Ag@SiO₂ 合金纳米球壳小,如图 9(c)所示。总 体来说,在相同环境下,两种纳米球壳优化后的内核 半径差别非常小,但 Au-Ag@Vacuum 合金纳米球 壳优化后的最大后向散射特性较好,优化的外壳厚 度较小。

4 结 论

从理论上定量分析了 Au-Ag 合金纳米球壳的 光吸收与后向散射特性,用数值计算给出光吸收与 后向散射特性的优化系数和相应的尺寸。结果表 明,Au摩尔分数为 50%的 Au-Ag@Vacuum 合金 纳米球壳在激光波长、内核半径和外壳厚度分别为 800 nm、27.89 nm 和 3.95 nm 时,光吸收能力最 强;在激光波长、内核半径及外壳厚度分别为 830 nm、56.37 nm 和 8.89 nm 时,后向散射能力最 强。此外,当Au摩尔分数小于11%时,Au-Ag合 金纳米球壳的光吸收特性优于 Au 纳米球壳;当 Au 摩尔分数大于11%时,Au-Ag合金纳米球壳优化后 的光吸收特性先减小后增大;当Au摩尔分数小于 9%时,Au-Ag合金纳米球壳优化后的后向散射特 性优于 Au 纳米球壳:当 Au 摩尔分数大于 9%时, Au-Ag 合金纳米球壳优化后的后向散射特性不及 Au 纳米球壳。随着生物组织折射率的增加,优化 后 Au-Ag 合金纳米球壳的光吸收与后向散系数呈 线性增加趋势。优化后 Au-Ag 合金纳米球壳具有 最佳的光吸收特性和后向散射特性,可作为理想的 光热治疗剂和成像造影剂。此外,还可以采用 T 矩 阵、离散偶极子近似、时域有限差分等方法对非球形 合金纳米颗粒的光学特性进行优化设计。

参考文献

- [1] Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles [J]. Langmuir, 1996, 12 (3): 788-800.
- [2] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment [J]. The Journal of Physical Chemistry B, 2003, 107(3): 668-677.
- [3] Guler U, Turan R. Effect of particle properties and

light polarization on the plasmonic resonances in metallic nanoparticles [J]. Optics Express, 2010, 18 (16): 17322-17338.

- [4] Jackson P, Periasamy S, Bansal V, et al. Evaluation of the effects of gold nanoparticle shape and size on contrast enhancement in radiological imaging [J]. Australasian Physical Engineering Sciences in Medicine, 2011, 34(2): 243-249.
- [5] Wang J, Sun J, Hu W, et al. A porous Au@Rh bimetallic core-shell nanostructure as an H₂O₂-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy [J]. Advanced Materials (Deerfield Beach, Fla.), 2020, 32(22): e2001862.
- [6] Li Z, Qian W N, Wei S M, et al. Application of photothermal conversion nanomaterials in tumor photothermal therapy [J]. Laser & Optoelectronics Progress, 2020, 57(17): 170005.
 李治,千维娜,魏思敏,等.光热转换纳米材料在肿 瘤光热治疗中的应用[J].激光与光电子学进展, 2020, 57(17): 170005.
- [7] Fathi F, Rashidi M R, Omidi Y. Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors[J]. Talanta, 2019, 192: 118-127.
- [8] Kaya S I, Kurbanoglu S, Ozkan S A. Nanomaterialsbased nanosensors for the simultaneous electrochemical determination of biologically important compounds: ascorbic acid, uric acid, and dopamine[J]. Critical Reviews in Analytical Chemistry, 2019, 49(2): 101-125.
- [9] Negrín-Montecelo Y, Comesaña-Hermo M, Khorashad L K, et al. Photophysical effects behind the efficiency of hot electron injection in plasmonassisted catalysis: the joint role of morphology and composition[J]. ACS Energy Letters, 2020, 5(2): 395-402.
- [10] Xu K C, Zhou R, Takei K, et al. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics [J]. Advanced Science, 2019, 6(16): 1900925.
- [11] Nguyen L, Dass M, Ober M F, et al. Chiral assembly of gold-silver core-shell plasmonic nanorods on DNA origami with strong optical activity[J]. ACS Nano, 2020, 14(6): 7454-7461.
- [12] Chiu C Y, Chen C K, Chang C W, et al. Surfactantdirected fabrication of supercrystals from the assembly of polyhedral Au-Pd core-shell nanocrystals and their electrical and optical properties [J]. Journal of the American Chemical Society, 2015, 137(6): 2265-2275.
- [13] Kim J, Lee J E, Lee H W, et al. Catalytic ozonation

第 41 卷 第 11 期/2021 年 6 月/光学学报

研究论文

of toluene using Mn-M bimetallic HZSM-5 (M: Fe, Cu, Ru, Ag) catalysts at room temperature [J]. Journal of Hazardous Materials, 2020, 397: 122577.

[14] Yakupu X, Tuersun P, Wu P P. Optimization of light absorption and scattering properties of gold nanospheroids[J]. Acta Optica Sinica, 2020, 40(4): 0429001.

夏伊丁·亚库普,帕尔哈提江·吐尔孙,武盼盼.金 纳米旋转椭球的光吸收和散射特性优化[J].光学学 报,2020,40(4):0429001.

- [15] Liu Y L, Kangas J, Wang Y R, et al. Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials[J]. Nanoscale, 2020, 12(23): 12346-12356.
- [16] Garcia M A. Surface plasmons in metallic nanoparticles: fundamentals and applications [J]. Journal of Physics D: Applied Physics, 2011, 44 (28): 283001.
- [17] Afzalinia A, Mirzaee M. Ultrasensitive fluorescent miRNA biosensor based on a "sandwich" oligonucleotide hybridization and fluorescence resonance energy transfer process using an ln(III)-MOF and Ag nanoparticles for early cancer diagnosis: application of central composite design [J]. ACS Applied Materials & Interfaces, 2020, 12 (14): 16076-16087.
- [18] Jiang T T, Song J, Zhang W T, et al. Au-Ag@Au hollow nanostructure with enhanced chemical stability and improved photothermal transduction efficiency for cancer treatment [J]. ACS Applied Materials &. Interfaces, 2015, 7(39): 21985-21994.
- [19] Liu R X, Guo J H, Ma G, et al. Alloyed crystalline Au-Ag hollow nanostructures with high chemical stability and catalytic performance [J]. ACS Applied Materials & Interfaces, 2016, 8(26): 16833-16844.
- [20] Qiu G Y, Ng S P, Wu C M L. Bimetallic Au-Ag alloy nanoislands for highly sensitive localized surface plasmon resonance biosensing [J]. Sensors and Actuators B: Chemical, 2018, 265: 459-467.
- [21] Lee T, Kwon S, Lee J J. Highly dense and accessible nanogaps in Au-Ag alloy patterned nanostructures for surface-enhanced Raman spectroscopy analysis [J]. ACS Applied Nano Materials, 2020, 3(6): 5920-5927.
- [22] Joseph D, Kwak C H, Huh Y S, et al. Synthesis of AuAg@ Ag core@ shell hollow cubic nanostructures

as SERS substrates for attomolar chemical sensing [J]. Sensors and Actuators B: Chemical, 2019, 281: 471-477.

- [23] Meng T Q, Jiang R H, Wang S Y, et al. Stem cell membrane-coated Au-Ag-PDA nanoparticle-guided photothermal acne therapy [J]. Colloids and Surfaces. B, Biointerfaces, 2020, 192: 111145.
- [24] Wang X, Kan C X, Xu J, et al. Dielectric function modelling and sensitivity forecast for Au-Ag alloy nanostructures [J]. Physical Chemistry Chemical Physics, 2020, 22(26): 14932-14940.
- [25] Yue X, Hou J, Zhao H F, et al. Au-Ag alloy nanoparticles with tunable cavity for plasmonenhanced photocatalytic H₂ evolution [J]. Journal of Energy Chemistry, 2020, 49: 1-7.
- [26] Asgari S, Sun L, Lin J, et al. Nanofibrillar cellulose/Au@ Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce [J]. Microchimica Acta, 2020, 187(7): 390.
- [27] Aden A L, Kerker M. Scattering of electromagnetic waves from two concentric spheres [J]. Journal of Applied Physics, 1951, 22(10): 1242-1246.
- [28] Bohren C F, Huffman D R. Absorption and scattering of light by small particles [M]. New York: Wiley, 1998.
- [29] Rioux D, Vallières S, Besner S, et al. An analytic model for the dielectric function of Au, Ag, and their alloys[J]. Advanced Optical Materials, 2014, 2(2): 176-182.
- [30] Huang K J, Li S X, Bai Z C, et al. Surface plasmons based on nonlocal and size-dependent effects of metallic nanoparticles [J]. Laser & Optoelectronics Progress, 2019, 56(20): 202414.
 黄恺健,李世雄,白忠臣,等.基于金属纳米结构非 局域与尺寸效应的表面等离激元特性研究[J].激光 与光电子学进展, 2019, 56(20): 202414.
- [31] Kreibig U, Vollmer M. Experimental methods[M]// Optical properties of metal clusters. Springer series in materials science. Heidelberg: Springer, 1995, 25: 203-274.
- [32] Malitson I H. Interspecimen comparison of the refractive index of fused silica [J]. Journal of the Optical Society of America, 1965, 55 (10): 1205-1209.